Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

trans-Diazido(1,8-dibenzyl-1,3,6,8,10,-13-hexaazacyclotetradecane)nickel(II)

Jong Won Shin^a and Kil Sik Min^b*

^aDepartment of Chemistry, Kyungpook National University, Daegu 702-701, Republic of Korea, and ^bDepartment of Chemistry Education, Kyungpook National University, Daegu 702-701, Republic of Korea Correspondence e-mail: minks@knu.ac.kr

Received 7 June 2008; accepted 16 June 2008

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.092; data-to-parameter ratio = 17.6.

In the centrosymmetric title compound, $[Ni(N_3)_2(C_{22}H_{34}N_6)]$, the Ni^{II} ion is coordinated by the four secondary N atoms of the macrocyclic ligand in a square-planar fashion with two N atoms of the azide ions in axial positions, resulting in a tetragonally distorted octahedron. An N-H···N hydrogenbonding interaction between the secondary amine N atom of the macrocycle and an adjacent azide ion gives rise to a chain structure.

Related literature

For related literature, see: Hancock (1990); Jacquinot & Hauser (2003); Jung et al. (1989); Larionova et al. (2003); Min & Suh (2001); Liu et al. (2006); Tsuge et al. (2004).

Experimental

Crystal data [Ni(N₃)₂(C₂₂H₃₄N₆)] $M_r = 525.32$

Monoclinic, $P2_1/c$ a = 10.2150 (5) Å

Mo $K\alpha$ radiation $\mu = 0.83 \text{ mm}^{-1}$

 $0.50 \times 0.20 \times 0.20$ mm

T = 173 (2) K

b = 15.8337 (9) Å c = 7.5477 (4) Å $\beta = 92.817 \ (1)^{\circ}$ V = 1219.30 (11) Å³ Z = 2

Data collection

Siemens SMART CCD	7464 measured reflections
diffractometer	2820 independent reflections
Absorption correction: multi-scan	2456 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.020$
$T_{\min} = 0.733, \ T_{\max} = 0.847$	

Refinement

 $\begin{array}{l} R[F^2>2\sigma(F^2)]=0.045\\ wR(F^2)=0.092 \end{array}$ 160 parameters H-atom parameters constrained S = 1.19 $\Delta \rho_{\rm max} = 0.42 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$ 2820 reflections

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N3-H3\cdots N6^{i}$	0.93	2.24	3.145 (3)	163
Symmetry code: (i)	-r + 1 - v + 2	-7 ± 1		

Symmetry code: (i) -x + 1, -y + 2, -z + 1.

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT and SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This research was supported by Kyungpook National University Research Fund, 2007.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ER2057).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hancock, R. D. (1990). Acc. Chem. Res. 23, 253-257.
- Jacquinot, P. & Hauser, P. C. (2003). Electroanalysis, 15, 1437-1444.
- Jung, S.-K., Kang, S.-G. & Suh, M. P. (1989). Bull. Korean Chem. Soc. 10, 362-366
- Larionova, J., Clérac, R., Donnadieu, B., Willemin, S. & Guérin, C. (2003). Crvst. Growth Des. 3, 267-272.
- Liu, X.-T., Wang, X.-Y., Zhang, W.-X., Cui, P. & Gao, S. (2006). Adv. Mater. 18, 2852-2856.
- Min, K. S. & Suh, M. P. (2001). Chem. Eur. J. 7, 303-313.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122. Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Tsuge, K., DeRosa, F., Lim, M. D. & Ford, P. C. (2004). J. Am. Chem. Soc. 126, 6564-6565.

Acta Cryst. (2008). E64, m941 [doi:10.1107/S1600536808018199]

trans-Diazido(1,8-dibenzyl-1,3,6,8,10,13-hexaazacyclotetradecane)nickel(II)

J. W. Shin and K. S. Min

Comment

Coordination compounds with tetraaza macrocyclic ligands have been widely studied in the context of metalloenzymes and the construction of extended coordination polymers (Tsuge *et al.*, 2004; Larionova *et al.*, 2003). Especially, Ni^{II} macrocyclic complexes having vacant sites axially are good candidates for assembling novel multi-dimensional networks and catalysts for the reduction of carbon dioxide in which they can have unique properties (Min & Suh, 2001; Jacquinot *et al.*, 2003). Furthermore, the azide ion is a bifunctional ligand which can link to transition metal complexes, thus allowing for the assembly of polymeric compounds (Liu *et al.*, 2006). Therefore, complexes combined with azide ions can also be building blocks for extended network structured materials. Here, we report the synthesis and structure of Ni^{II} macrocyclic complex, *trans*-diazido(1,8-dibenzyl-1,3,6,8,10,13- hexaazacyclotetradecane)nickel(II), with two azide ions axially.

In the title compound, the coordination geometry around Ni^{II} ion is tetragonally elongated octahedron in which Ni^{II} ion is bonded to the four secondary amine N atoms of the macrocyclic ligand in the square-planar fashion and two N atoms from the azide ions at the axial sites as shown in Fig. 1. The average Ni—N_{eq} and Ni—N_{ax} bond distances are 2.072 (1) and 2.159 (1) Å, respectively. The axial Ni—N bond distance is longer than the equatorial Ni—N bond lengths, which can be attributed to the Jahn-Teller distortion of the Ni^{II} ion and/or the ring contraction of the macrocyclic ligand. Two N—N bond distances of the azide ion are not significant different even though one terminal nitrogen atom is coordinated to Ni^{II} ion, indicate that the azide ion is delocalized fully (N4—N5 = 1.189 (3) Å and N5—N6 = 1.171 (3) Å). The complex has an inversion center at the nickel atom and the azamacrocyclic ligand adopts thermodynamically the most stable *R*,*R*,*S*,*S* configuration (Hancock, 1990). All azide ions coordinating Ni^{II} ions axially are involved in hydrogen bonding interactions, which results to a rigid supramolecular one-dimensional chain propagating along the *c* axis (Fig. 2).

Experimental

The title compound is prepared as follows. To a DMF/H₂O (v/v; 1:1, 20 ml) solution of [Ni(C₂₂H₃₄N₆)Cl₂] (0.20 g, 0.40 mmol) (Jung *et al.*, 1989) was added dropwise an aqueous solution (10 ml) containing NaN₃ (0.052 g, 0.80 mmol) at room temperature. The color of the solution turned from yellow to pale pink. The mixture solution was stirred for 1 h during which time a pink precipitate of formed which was collected by filtration, washed with methanol, and dried in air. Single crystals of the title compound suitable for X-ray crystallography were obtained by layering of the aqueous solution of NaN₃ on the DMF/H₂O solution of [Ni(C₂₂H₃₄N₆)Cl₂] for several days.

Refinement

All H atoms in the title compound were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C—H distances of 0.95 (ring H atoms) or 0.99 (open chain H atoms) Å and N—H distance of 0.93 Å, and with $U_{iso}(H)$ values of 1.2 times the equivalent anisotropic displacement parameters of the parent C and N atoms.

Figures

Fig. 1. Drawing of the molecular title compound at 50% probability. Atoms labeled with the suffix `a' are at the symmetry position (-x+1, -y+2, -z).

Fig. 2. Perspective view of the title compound showing a one-dimensional chain formed by N—H…N hydrogen-bonding interactions.

trans-Diazido(1,8-dibenzyl-1,3,6,8,10,13-hexaazacyclotetradecane)nickel(II)

Crystal data	
[Ni(N ₃) ₂ (C ₂₂ H ₃₄ N ₆)]	$F_{000} = 556$
$M_r = 525.32$	$D_{\rm x} = 1.431 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo K α radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 2820 reflections
<i>a</i> = 10.2150 (5) Å	$\theta = 2.0 - 28.3^{\circ}$
<i>b</i> = 15.8337 (9) Å	$\mu = 0.83 \text{ mm}^{-1}$
c = 7.5477 (4) Å	T = 173 (2) K
$\beta = 92.817 (1)^{\circ}$	Block, violet
$V = 1219.30 (11) \text{ Å}^3$	$0.50\times0.20\times0.20\ mm$
Z = 2	

Data collection

Siemens SMART CCD diffractometer	2820 independent reflections
Radiation source: fine-focus sealed tube	2456 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.020$
T = 173(2) K	$\theta_{\text{max}} = 28.3^{\circ}$
ϕ and ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -13 \rightarrow 11$
$T_{\min} = 0.733, T_{\max} = 0.847$	$k = -17 \rightarrow 20$
7464 measured reflections	$l = -9 \rightarrow 9$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained

$wR(F^2) = 0.092$	$w = 1/[\sigma^2(F_o^2) + (0.0239P)^2 + 1.3575P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.19	$(\Delta/\sigma)_{max} < 0.001$
2820 reflections	$\Delta \rho_{max} = 0.42 \text{ e} \text{ Å}^{-3}$
160 parameters	$\Delta \rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

F 1		1.	1.				• •	. 1.	1 .	,	182	ź١
Fractional	atomic	coordinates	and 1	sotron	IC OF P	auwalent	isotron	10 dis	nlacement	narameters	IA^{-}	- 1
i ractionai	aiomic	coorainaico	unu n	5011 OP		juivaieni	1501100	ic and	pracement	parameters	(11	/

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Ni1	0.5000	1.0000	0.0000	0.01702 (11)
N1	0.37796 (18)	0.89900 (12)	0.0535 (2)	0.0213 (4)
H1	0.3964	0.8821	0.1701	0.026*
N2	0.20050 (19)	0.99153 (13)	0.1463 (2)	0.0243 (4)
N3	0.38842 (18)	1.08789 (12)	0.1271 (2)	0.0204 (4)
H3	0.4085	1.0836	0.2483	0.024*
N4	0.6135 (2)	0.97898 (13)	0.2449 (2)	0.0254 (4)
N5	0.57874 (18)	0.93204 (12)	0.3563 (2)	0.0221 (4)
N6	0.5460 (2)	0.88500 (14)	0.4654 (3)	0.0315 (5)
C1	0.4175 (2)	0.83010 (15)	-0.0648 (3)	0.0268 (5)
H1A	0.3791	0.8395	-0.1862	0.032*
H1B	0.3852	0.7753	-0.0213	0.032*
C2	0.2360 (2)	0.92198 (15)	0.0349 (3)	0.0240 (5)
H2A	0.2139	0.9369	-0.0904	0.029*
H2B	0.1831	0.8720	0.0644	0.029*
C3	0.2447 (2)	1.07476 (15)	0.0969 (3)	0.0255 (5)
H3A	0.1979	1.1175	0.1658	0.031*
H3B	0.2208	1.0842	-0.0303	0.031*
C4	0.4333 (2)	1.17143 (15)	0.0675 (3)	0.0258 (5)
H4A	0.4050	1.2159	0.1495	0.031*
H4B	0.3948	1.1839	-0.0526	0.031*
C5	0.2105 (2)	0.97543 (16)	0.3375 (3)	0.0256 (5)
H5A	0.1964	1.0291	0.4012	0.031*
H5B	0.3002	0.9555	0.3709	0.031*
C6	0.1129 (2)	0.91069 (15)	0.3963 (3)	0.0230 (5)

C7	0.1481 (3)	0.85575 (17)	0.5339 (3)	0.0302 (5)
H7	0.2352	0.8566	0.5841	0.036*
C8	0.0580 (3)	0.79974 (17)	0.5991 (3)	0.0359 (6)
H8	0.0830	0.7633	0.6948	0.043*
C9	-0.0681 (3)	0.79699 (16)	0.5245 (3)	0.0322 (6)
Н9	-0.1298	0.7582	0.5679	0.039*
C10	-0.1042 (2)	0.85094 (16)	0.3866 (3)	0.0288 (5)
H10	-0.1910	0.8491	0.3352	0.035*
C11	-0.0144 (2)	0.90777 (15)	0.3228 (3)	0.0254 (5)
H11	-0.0401	0.9448	0.2284	0.031*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0202 (2)	0.01814 (19)	0.01269 (18)	-0.00082 (17)	0.00037 (13)	0.00017 (16)
N1	0.0243 (10)	0.0257 (10)	0.0140 (8)	-0.0017 (8)	0.0009 (7)	-0.0004 (7)
N2	0.0238 (9)	0.0284 (11)	0.0210 (9)	-0.0012 (8)	0.0040 (7)	-0.0004 (8)
N3	0.0245 (10)	0.0224 (10)	0.0144 (8)	-0.0005 (8)	0.0011 (7)	0.0005 (7)
N4	0.0283 (10)	0.0301 (11)	0.0174 (9)	0.0000 (8)	-0.0017 (8)	0.0042 (8)
N5	0.0216 (10)	0.0257 (10)	0.0187 (9)	0.0035 (8)	-0.0029 (7)	-0.0055 (8)
N6	0.0390 (12)	0.0323 (12)	0.0232 (10)	-0.0042 (10)	0.0017 (9)	0.0044 (9)
C1	0.0291 (13)	0.0229 (12)	0.0287 (12)	-0.0041 (10)	0.0040 (9)	-0.0039 (9)
C2	0.0238 (11)	0.0306 (13)	0.0175 (10)	-0.0050 (10)	0.0010 (8)	-0.0025 (9)
C3	0.0245 (12)	0.0289 (13)	0.0230 (11)	0.0022 (10)	0.0005 (9)	0.0011 (9)
C4	0.0310 (13)	0.0199 (11)	0.0267 (12)	0.0019 (10)	0.0029 (9)	-0.0011 (9)
C5	0.0249 (12)	0.0330 (13)	0.0190 (11)	-0.0031 (10)	0.0019 (9)	-0.0041 (9)
C6	0.0263 (12)	0.0256 (12)	0.0174 (10)	0.0019 (10)	0.0038 (8)	-0.0053 (9)
C7	0.0308 (13)	0.0342 (14)	0.0249 (12)	0.0026 (11)	-0.0037 (10)	0.0015 (10)
C8	0.0493 (16)	0.0319 (14)	0.0263 (13)	0.0015 (12)	0.0006 (11)	0.0077 (10)
С9	0.0386 (15)	0.0278 (13)	0.0312 (13)	-0.0065 (11)	0.0124 (11)	-0.0010 (10)
C10	0.0225 (12)	0.0343 (14)	0.0300 (12)	0.0001 (10)	0.0060 (9)	-0.0056 (10)
C11	0.0238 (12)	0.0283 (12)	0.0243 (11)	0.0053 (10)	0.0033 (9)	0.0008 (9)

Geometric parameters (Å, °)

2.0650 (18)	C2—H2B	0.9900
2.0650 (18)	С3—НЗА	0.9900
2.0795 (19)	С3—Н3В	0.9900
2.0795 (19)	C4—C1 ⁱ	1.526 (3)
2.1592 (19)	C4—H4A	0.9900
2.1592 (19)	C4—H4B	0.9900
1.479 (3)	C5—C6	1.512 (3)
1.495 (3)	С5—Н5А	0.9900
0.9300	С5—Н5В	0.9900
1.443 (3)	C6—C7	1.389 (3)
1.448 (3)	C6—C11	1.389 (3)
1.464 (3)	С7—С8	1.385 (4)
1.477 (3)	С7—Н7	0.9500
	2.0650 (18) 2.0650 (18) 2.0795 (19) 2.0795 (19) 2.1592 (19) 2.1592 (19) 1.479 (3) 1.495 (3) 0.9300 1.443 (3) 1.448 (3) 1.464 (3) 1.477 (3)	$2.0650 (18)$ $C2-H2B$ $2.0650 (18)$ $C3-H3A$ $2.0795 (19)$ $C3-H3B$ $2.0795 (19)$ $C4-C1^i$ $2.1592 (19)$ $C4-H4A$ $2.1592 (19)$ $C4-H4B$ $1.479 (3)$ $C5-C6$ $1.495 (3)$ $C5-H5A$ 0.9300 $C5-H5B$ $1.443 (3)$ $C6-C7$ $1.448 (3)$ $C6-C11$ $1.464 (3)$ $C7-C8$ $1.477 (3)$ $C7-H7$

N3—C3	1.489 (3)	C8—C9	1.381 (4)
N3—H3	0.9300	C8—H8	0.9500
N4—N5	1.189 (3)	C9—C10	1.383 (4)
N5—N6	1.171 (3)	С9—Н9	0.9500
C1—C4 ⁱ	1.526 (3)	C10—C11	1.388 (3)
C1—H1A	0.9900	C10—H10	0.9500
C1—H1B	0.9900	C11—H11	0.9500
C2—H2A	0.9900		
N3—Ni1—N3 ⁱ	180.0	N1—C2—H2A	108.8
N3—Ni1—N1	94.48 (7)	N2—C2—H2B	108.8
N3 ⁱ —Ni1—N1	85.52 (7)	N1—C2—H2B	108.8
N3—Ni1—N1 ⁱ	85.52 (7)	H2A—C2—H2B	107.7
N3 ⁱ —Ni1—N1 ⁱ	94.48 (7)	N2—C3—N3	113.92 (19)
N1—Ni1—N1 ⁱ	180.0	N2—C3—H3A	108.8
N3—Ni1—N4 ⁱ	90.49 (7)	N3—C3—H3A	108.8
N3 ⁱ —Ni1—N4 ⁱ	89.51 (7)	N2—C3—H3B	108.8
N1—Ni1—N4 ⁱ	89.03 (7)	N3—C3—H3B	108.8
N1 ⁱ —Ni1—N4 ⁱ	90.97 (7)	НЗА—СЗ—НЗВ	107.7
N3—Ni1—N4	89.51 (7)	N3—C4—C1 ⁱ	108.36 (19)
N3 ⁱ —Ni1—N4	90.49 (7)	N3—C4—H4A	110.0
N1—Ni1—N4	90.97 (7)	C1 ⁱ —C4—H4A	110.0
N1 ⁱ —Ni1—N4	89.03 (7)	N3—C4—H4B	110.0
N4 ⁱ —Ni1—N4	180.00 (10)	C1 ⁱ —C4—H4B	110.0
C1—N1—C2	114.54 (17)	H4A—C4—H4B	108.4
C1—N1—Ni1	105.41 (13)	N2—C5—C6	113.11 (19)
C2—N1—Ni1	112.49 (14)	N2—C5—H5A	109.0
C1—N1—H1	108.1	С6—С5—Н5А	109.0
C2—N1—H1	108.1	N2—C5—H5B	109.0
Ni1—N1—H1	108.1	С6—С5—Н5В	109.0
C2—N2—C3	117.02 (18)	H5A—C5—H5B	107.8
C2—N2—C5	115.73 (19)	C7—C6—C11	118.8 (2)
C3—N2—C5	113.87 (19)	C7—C6—C5	119.6 (2)
C4—N3—C3	113.36 (18)	C11—C6—C5	121.5 (2)
C4—N3—Ni1	105.99 (13)	C8—C7—C6	121.0 (2)
C3—N3—Ni1	113.40 (14)	С8—С7—Н7	119.5
C4—N3—H3	108.0	С6—С7—Н7	119.5
C3—N3—H3	108.0	C9—C8—C7	119.9 (2)
Ni1—N3—H3	108.0	С9—С8—Н8	120.1
N5—N4—Ni1	122.34 (16)	С7—С8—Н8	120.1
N6—N5—N4	179.0 (2)	C8—C9—C10	119.7 (2)
N1—C1—C4 ⁱ	108.84 (19)	С8—С9—Н9	120.1
N1—C1—H1A	109.9	С10—С9—Н9	120.1
C4 ⁱ —C1—H1A	109.9	C9—C10—C11	120.4 (2)
N1—C1—H1B	109.9	C9—C10—H10	119.8
C4 ⁱ —C1—H1B	109.9	С11—С10—Н10	119.8

H1A—C1—H1B	108.3	C10-C11-C6	120.3 (2)
N2—C2—N1	113.67 (18)	C10-C11-H11	119.9
N2—C2—H2A	108.8	С6—С11—Н11	119.9
N3—Ni1—N1—C1	165.54 (14)	C3—N2—C2—N1	72.2 (3)
N3 ⁱ —Ni1—N1—C1	-14.46 (14)	C5—N2—C2—N1	-66.4 (2)
N4 ⁱ —Ni1—N1—C1	75.12 (14)	C1—N1—C2—N2	-177.66 (18)
N4—Ni1—N1—C1	-104.88 (14)	Ni1—N1—C2—N2	-57.3 (2)
N3—Ni1—N1—C2	40.06 (14)	C2—N2—C3—N3	-71.2 (3)
N3 ⁱ —Ni1—N1—C2	-139.94 (14)	C5—N2—C3—N3	68.1 (2)
N4 ⁱ —Ni1—N1—C2	-50.35 (14)	C4—N3—C3—N2	176.97 (18)
N4—Ni1—N1—C2	129.65 (14)	Ni1—N3—C3—N2	56.1 (2)
N1—Ni1—N3—C4	-164.63 (14)	C3—N3—C4—C1 ⁱ	-166.97 (18)
N1 ⁱ —Ni1—N3—C4	15.37 (14)	Ni1—N3—C4—C1 ⁱ	-41.96 (19)
N4 ⁱ —Ni1—N3—C4	-75.56 (14)	C2—N2—C5—C6	-66.6 (3)
N4—Ni1—N3—C4	104.44 (14)	C3—N2—C5—C6	153.5 (2)
N1—Ni1—N3—C3	-39.65 (15)	N2C5C7	145.0 (2)
N1 ⁱ —Ni1—N3—C3	140.35 (15)	N2-C5-C6-C11	-38.7 (3)
N4 ⁱ —Ni1—N3—C3	49.42 (15)	C11—C6—C7—C8	-0.9 (4)
N4—Ni1—N3—C3	-130.58 (15)	C5—C6—C7—C8	175.5 (2)
N3—Ni1—N4—N5	83.63 (19)	C6—C7—C8—C9	1.2 (4)
N3 ⁱ —Ni1—N4—N5	-96.37 (19)	C7—C8—C9—C10	-0.8 (4)
N1—Ni1—N4—N5	-10.84 (19)	C8—C9—C10—C11	0.0 (4)
N1 ⁱ —Ni1—N4—N5	169.16 (19)	C9—C10—C11—C6	0.3 (4)
C2—N1—C1—C4 ⁱ	165.51 (18)	C7—C6—C11—C10	0.1 (3)
Ni1—N1—C1—C4 ⁱ	41.3 (2)	C5-C6-C11-C10	-176.2 (2)
Symmetry codes: (i) $-x+1$, $-y+2$, $-z$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
N3—H3···N6 ⁱⁱ	0.93	2.24	3.145 (3)	163
Symmetry codes: (ii) $-x+1$, $-y+2$, $-z+1$.				

